Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38388764

RESUMO

PURPOSE: Aorta segmentation is extremely useful in clinical practice, allowing the diagnosis of numerous pathologies, such as dissections, aneurysms and occlusive disease. In such cases, image segmentation is prerequisite for applying diagnostic algorithms, which in turn allow the prediction of possible complications and enable risk assessment, which is crucial in saving lives. The aim of this paper is to present a novel fully automatic 3D segmentation method, which combines basic image processing techniques and more advanced machine learning algorithms, for detecting and modelling the aorta in 3D CT imaging data. METHODS: An initial intensity threshold-based segmentation procedure is followed by a classification-based segmentation approach, based on a Markov Random Field network. The result of the proposed two-stage segmentation process is modelled and visualized. RESULTS: The proposed methodology was applied to 16 3D CT data sets and the extracted aortic segments were reconstructed as 3D models. The performance of segmentation was evaluated both qualitatively and quantitatively against other commonly used segmentation techniques, in terms of the accuracy achieved, compared to the actual aorta, which was defined manually by experts. CONCLUSION: The proposed methodology achieved superior segmentation performance, compared to all compared segmentation techniques, in terms of the accuracy of the extracted 3D aortic model. Therefore, the proposed segmentation scheme could be used in clinical practice, such as in treatment planning and assessment, as it can speed up the evaluation of the medical imaging data, which is commonly a lengthy and tedious process.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38082809

RESUMO

Limb spasticity is caused by stroke, multiple sclerosis, traumatic brain injury and various central nervous system pathologies such as brain tumors resulting in joint stiffness, loss of hand function and severe pain. This paper presents with the Rehabotics integrated rehabilitation system aiming to provide highly individualized assessment and treatment of the function of the upper limbs for patients with spasticity after stroke, focusing on the developed passive exoskeletal system. The proposed system can: (i) measure various motor and kinematic parameters of the upper limb in order to evaluate the patient's condition and progress, as well as (ii) offer a specialized rehabilitation program (therapeutic exercises, retraining of functional movements and support of daily activities) through an interactive virtual environment. The outmost aim of this multidisciplinary research work is to create new tools for providing high-level treatment and support services to patients with spasticity after stroke.Clinical Relevance- This paper presents a new passive exoskeletal system aiming to provide enhanced treatment and assessment of patients with upper limb spasticity after stroke.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Resultado do Tratamento , Extremidade Superior , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral/métodos , Terapia por Exercício , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/etiologia
3.
J Med Imaging (Bellingham) ; 10(3): 034002, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37274759

RESUMO

Purpose: Image registration is a very common procedure in dental applications for aligning images. Registration between pairs of images taken from different angles can improve diagnosis. Our study presents an edge-enhanced unsupervised deep learning (DL)-based deformable registration framework for aligning two-dimensional (2D) pairs of dental x-ray images. Approach: The proposed neural network is based on the combination of a U-Net like structure, which produces a displacement field, combined with spatial transformer networks, which produce the transformed image. The proposed structure is trained end-to-end by minimizing a weighted loss function consisting of three parts corresponding to image similarity, edge similarity, and registration restrictions. In this regard, the proposed edge specific loss enhances the unsupervised training of the registration framework without the need of supervision through anatomical structures. Results: The proposed framework was applied to two datasets, a set of 104 x-ray images of mandibles, arranged in 2600 pairs for training and testing and a set of 17 pairs of pre- and post-operative reconstructed panoramic images. The proposed model outperformed both conventional registration methods and DL-based techniques for both qualitative and quantitative assessment, in most of the compared metrics concerning intensity similarity and edge distances. Conclusions: The proposed framework achieved accurate and fast deformable alignment of pairs of 2D dental radiographic images. The edge-based module of the loss function enhances the unsupervised learning by directing the network toward deformations that take into consideration the edges of the depicted objects (teeth, bone, and tissue), which are crucial in diagnosis.

4.
Cancers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831401

RESUMO

PURPOSE: Tumor heterogeneity may be responsible for poor response to treatment and adverse prognosis in women with HGOEC. The purpose of this study is to propose an automated classification system that allows medical experts to automatically identify intratumoral areas of different cellularity indicative of tumor heterogeneity. METHODS: Twenty-two patients underwent dedicated pelvic MRI, and a database of 11,095 images was created. After image processing techniques were applied to align and assess the cancerous regions, two specific imaging series were used to extract quantitative features (radiomics). These features were employed to create, through artificial intelligence, an estimator of the highly cellular intratumoral area as defined by arbitrarily selected apparent diffusion coefficient (ADC) cut-off values (ADC < 0.85 × 10-3 mm2/s). RESULTS: The average recorded accuracy of the proposed automated classification system was equal to 0.86. CONCLUSION: The proposed classification system for assessing highly cellular intratumoral areas, based on radiomics, may be used as a tool for assessing tumor heterogeneity.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37015600

RESUMO

Metastatic Melanoma (MM) is an aggressive type of cancer which produces metastases throughout the body with very poor survival rates. Recent advances in immunotherapy have shown promising results for controlling disease's progression. Due to the often rapid progression, fast and accurate diagnosis and treatment response assessment is vital for the whole patient management. These procedures prerequisite accurate, whole-body tumor identification. This can be offered by the imaging modality Positron Emission Tomography (PET)/Computed Tomography (CT) with the radiotracer F 18-Fluorodeoxyglucose (FDG). However, manual segmentation of PET/CT images is a very time-consuming and labor intensive procedure that requires expert knowledge. Most of the previously published segmentation techniques focus on a specific type of tumor or part of the body and require a great amount of manually labeled data, which is, however, difficult for MM. Multimodal analysis of PET/CT is also crucial because FDG-PET contains only the functional information of tumors which can be complemented by the anatomical information of CT. In this paper, we propose a whole-body segmentation framework capable of efficiently identifying the highly heterogeneous tumor lesions of MM from the whole-body 3D FDG-PET/CT images. The proposed decision support system begins with an Ensemble Unsupervised Segmentation of regions of high FDG-uptake based on Fuzzy C-means and a custom region growing algorithm. Then, a region classification model based on radiomics features and Neural Networks classifies these regions as tumors or not. Experimental results showed high performance in the identification of MM lesions with Sensitivity 83.68%, Specificity 91.82%, F1-score 75.42%, AUC 94.16% and Balanced accuracy 87.75% which were also supported by the public dataset evaluation.

6.
Biomed Phys Eng Express ; 7(5)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34265756

RESUMO

Head and neck (H&N) cancer patients often present anatomical and geometrical changes in tumors and organs at risk (OARs) during radiotherapy treatment. These changes may result in the need to adapt the existing treatment planning, using an expert's subjective opinion, for offline adaptive radiotherapy and a new treatment planning before each treatment, for online adaptive radiotherapy. In the present study, a fast methodology is proposed to assist in planning adaptation clinical decision using tumor and parotid glands percentage volume changes during treatment. The proposed approach was applied to 40 Η&Ν cases, with one planning Computed Tomography (pCT) image and CBCT scans for 6 weeks of treatment per case. Deformable registration was used for each patient's pCT image alignment to its weekly CBCT. The calculated transformations were used to align each patient's anatomical structures to the weekly anatomy. Clinical target volume (CTV) and parotid gland volume percentage changes were calculated in each case. The accuracy of the achieved image alignment was validated qualitatively and quantitatively. Furthermore, statistical analysis was performed to test if there is a statistically significant correlation between CTV and parotid glands volume percentage changes. Average MDA for CTV and parotid glands between corresponding structures defined by an expert in CBCTs and automatically calculated through registration was 1.4 ± 0.1 mm and 1.5 ± 0.1 mm, respectively. The mean registration time of the first CBCT image registration for 40 cases was lower than 3.4 min. Five patients show more than 20% tumor volume change. Six patients show more than 30% parotid glands volume change. Ten out of 40 patients proposed for planning adaptation. All the statistical tests performed showed no correlation between CTV/parotid glands percentage volume changes. The aim to assist in clinical decision making on a fast and automatic way was achieved using the proposed methodology, thereby reducing workload in clinical practice.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Tomografia Computadorizada de Feixe Cônico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Órgãos em Risco/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador
7.
Dentomaxillofac Radiol ; 46(7): 20160390, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28402714

RESUMO

OBJECTIVES: Image registration is commonly used in dental applications for aligning imaging data sets, which is particularly useful when assessing the progression or regression of particular pathomorphic conditions. However, due to the nature of the processed data or the data acquisition process itself, rigid body registration may be insufficient to accurately align the processed data sets. In such cases, deformable models are employed. This study presents a comparison of four well-established deformable models for aligning CBCT volumes. METHODS: The compared models include the original Demons algorithm, symmetric forces Demons, diffeomorphic Demons and level-set motion. The compared techniques are incorporated into a general image registration scheme featuring two distinct stages: a common, fast, rigid-based alignment for pre-registering the data and a finer elastic registration phase, based on the four compared deformation models. RESULTS: The proposed framework was applied to a total of 40 CBCT volume pairs with known and unknown initial differences. CONCLUSIONS: After both qualitative and quantitative assessment of the produced aligned data, it was concluded that the level-set motion method outperformed all other techniques for data pairs with both unknown initial differences, as well as with known elastic deviations based on fixed sinusoidal models and B-splines.


Assuntos
Aumento do Rebordo Alveolar , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Humanos , Cirurgia Assistida por Computador
8.
Dentomaxillofac Radiol ; 46(4): 20160225, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28112548

RESUMO

OBJECTIVES: Panoramic images of the jaws are extensively used for dental examinations and/or surgical planning because they provide a general overview of the patient's maxillary and mandibular regions. Panoramic images are two-dimensional projections of three-dimensional (3D) objects. Therefore, it should be possible to reconstruct them from 3D radiographic representations of the jaws, produced by CBCT scanning, obviating the need for additional exposure to X-rays, should there be a need of panoramic views. The aim of this article is to present an automated method for reconstructing panoramic dental images from CBCT data. METHODS: The proposed methodology consists of a series of sequential processing stages for detecting a fitting dental arch which is used for projecting the 3D information of the CBCT data to the two-dimensional plane of the panoramic image. The detection is based on a template polynomial which is constructed from a training data set. RESULTS: A total of 42 CBCT data sets of real clinical pre-operative and post-operative representations from 21 patients were used. Eight data sets were used for training the system and the rest for testing. CONCLUSIONS: The proposed methodology was successfully applied to CBCT data sets, producing corresponding panoramic images, suitable for examining pre-operatively and post-operatively the patients' maxillary and mandibular regions.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Arco Dental/diagnóstico por imagem , Implantação Dentária Endóssea , Imageamento Tridimensional/métodos , Maxila/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Panorâmica/métodos , Adulto , Idoso , Aumento do Rebordo Alveolar , Arco Dental/cirurgia , Feminino , Humanos , Masculino , Maxila/cirurgia , Pessoa de Meia-Idade , Retalhos Cirúrgicos
9.
Comput Biol Med ; 69: 120-33, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26771247

RESUMO

Spatial alignment of Computed Tomography (CT) data sets is often required in numerous medical applications and it is usually achieved by applying conventional exhaustive registration techniques, which are mainly based on the intensity of the subject data sets. Those techniques consider the full range of data points composing the data, thus negatively affecting the required processing time. Alternatively, alignment can be performed using the correspondence of extracted data points from both sets. Moreover, various geometrical characteristics of those data points can be used, instead of their chromatic properties, for uniquely characterizing each point, by forming a specific geometrical descriptor. This paper presents a comparative study reviewing variations of geometry-based, descriptor-oriented registration techniques, as well as conventional, exhaustive, intensity-based methods for aligning three-dimensional (3D) CT data pairs. In this context, three general image registration frameworks were examined: a geometry-based methodology featuring three distinct geometrical descriptors, an intensity-based methodology using three different similarity metrics, as well as the commonly used Iterative Closest Point algorithm. All techniques were applied on a total of thirty 3D CT data pairs with both known and unknown initial spatial differences. After an extensive qualitative and quantitative assessment, it was concluded that the proposed geometry-based registration framework performed similarly to the examined exhaustive registration techniques. In addition, geometry-based methods dramatically improved processing time over conventional exhaustive registration.


Assuntos
Algoritmos , Bases de Dados Factuais , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...